Extensions 1→N→G→Q→1 with N=C4 and Q=C22xD9

Direct product G=NxQ with N=C4 and Q=C22xD9
dρLabelID
C22xC4xD9144C2^2xC4xD9288,353

Semidirect products G=N:Q with N=C4 and Q=C22xD9
extensionφ:Q→Aut NdρLabelID
C4:1(C22xD9) = C2xD4xD9φ: C22xD9/D18C2 ⊆ Aut C472C4:1(C2^2xD9)288,356
C4:2(C22xD9) = C22xD36φ: C22xD9/C2xC18C2 ⊆ Aut C4144C4:2(C2^2xD9)288,354

Non-split extensions G=N.Q with N=C4 and Q=C22xD9
extensionφ:Q→Aut NdρLabelID
C4.1(C22xD9) = D8xD9φ: C22xD9/D18C2 ⊆ Aut C4724+C4.1(C2^2xD9)288,120
C4.2(C22xD9) = D8:D9φ: C22xD9/D18C2 ⊆ Aut C4724C4.2(C2^2xD9)288,121
C4.3(C22xD9) = D8:3D9φ: C22xD9/D18C2 ⊆ Aut C41444-C4.3(C2^2xD9)288,122
C4.4(C22xD9) = SD16xD9φ: C22xD9/D18C2 ⊆ Aut C4724C4.4(C2^2xD9)288,123
C4.5(C22xD9) = D72:C2φ: C22xD9/D18C2 ⊆ Aut C4724+C4.5(C2^2xD9)288,124
C4.6(C22xD9) = SD16:D9φ: C22xD9/D18C2 ⊆ Aut C41444-C4.6(C2^2xD9)288,125
C4.7(C22xD9) = SD16:3D9φ: C22xD9/D18C2 ⊆ Aut C41444C4.7(C2^2xD9)288,126
C4.8(C22xD9) = Q16xD9φ: C22xD9/D18C2 ⊆ Aut C41444-C4.8(C2^2xD9)288,127
C4.9(C22xD9) = Q16:D9φ: C22xD9/D18C2 ⊆ Aut C41444C4.9(C2^2xD9)288,128
C4.10(C22xD9) = D72:5C2φ: C22xD9/D18C2 ⊆ Aut C41444+C4.10(C2^2xD9)288,129
C4.11(C22xD9) = C2xD4.D9φ: C22xD9/D18C2 ⊆ Aut C4144C4.11(C2^2xD9)288,141
C4.12(C22xD9) = C2xD4:D9φ: C22xD9/D18C2 ⊆ Aut C4144C4.12(C2^2xD9)288,142
C4.13(C22xD9) = D36:6C22φ: C22xD9/D18C2 ⊆ Aut C4724C4.13(C2^2xD9)288,143
C4.14(C22xD9) = C2xC9:Q16φ: C22xD9/D18C2 ⊆ Aut C4288C4.14(C2^2xD9)288,151
C4.15(C22xD9) = C2xQ8:2D9φ: C22xD9/D18C2 ⊆ Aut C4144C4.15(C2^2xD9)288,152
C4.16(C22xD9) = C36.C23φ: C22xD9/D18C2 ⊆ Aut C41444C4.16(C2^2xD9)288,153
C4.17(C22xD9) = D4.D18φ: C22xD9/D18C2 ⊆ Aut C41444-C4.17(C2^2xD9)288,159
C4.18(C22xD9) = D4:D18φ: C22xD9/D18C2 ⊆ Aut C4724+C4.18(C2^2xD9)288,160
C4.19(C22xD9) = D4.9D18φ: C22xD9/D18C2 ⊆ Aut C41444C4.19(C2^2xD9)288,161
C4.20(C22xD9) = C2xD4:2D9φ: C22xD9/D18C2 ⊆ Aut C4144C4.20(C2^2xD9)288,357
C4.21(C22xD9) = D4:6D18φ: C22xD9/D18C2 ⊆ Aut C4724C4.21(C2^2xD9)288,358
C4.22(C22xD9) = C2xQ8xD9φ: C22xD9/D18C2 ⊆ Aut C4144C4.22(C2^2xD9)288,359
C4.23(C22xD9) = C2xQ8:3D9φ: C22xD9/D18C2 ⊆ Aut C4144C4.23(C2^2xD9)288,360
C4.24(C22xD9) = Q8.15D18φ: C22xD9/D18C2 ⊆ Aut C41444C4.24(C2^2xD9)288,361
C4.25(C22xD9) = C4oD4xD9φ: C22xD9/D18C2 ⊆ Aut C4724C4.25(C2^2xD9)288,362
C4.26(C22xD9) = C2xDic36φ: C22xD9/C2xC18C2 ⊆ Aut C4288C4.26(C2^2xD9)288,109
C4.27(C22xD9) = C2xC72:C2φ: C22xD9/C2xC18C2 ⊆ Aut C4144C4.27(C2^2xD9)288,113
C4.28(C22xD9) = C2xD72φ: C22xD9/C2xC18C2 ⊆ Aut C4144C4.28(C2^2xD9)288,114
C4.29(C22xD9) = D72:7C2φ: C22xD9/C2xC18C2 ⊆ Aut C41442C4.29(C2^2xD9)288,115
C4.30(C22xD9) = C8:D18φ: C22xD9/C2xC18C2 ⊆ Aut C4724+C4.30(C2^2xD9)288,118
C4.31(C22xD9) = C8.D18φ: C22xD9/C2xC18C2 ⊆ Aut C41444-C4.31(C2^2xD9)288,119
C4.32(C22xD9) = C22xDic18φ: C22xD9/C2xC18C2 ⊆ Aut C4288C4.32(C2^2xD9)288,352
C4.33(C22xD9) = D4:8D18φ: C22xD9/C2xC18C2 ⊆ Aut C4724+C4.33(C2^2xD9)288,363
C4.34(C22xD9) = D4.10D18φ: C22xD9/C2xC18C2 ⊆ Aut C41444-C4.34(C2^2xD9)288,364
C4.35(C22xD9) = C2xC8xD9central extension (φ=1)144C4.35(C2^2xD9)288,110
C4.36(C22xD9) = C2xC8:D9central extension (φ=1)144C4.36(C2^2xD9)288,111
C4.37(C22xD9) = D36.2C4central extension (φ=1)1442C4.37(C2^2xD9)288,112
C4.38(C22xD9) = M4(2)xD9central extension (φ=1)724C4.38(C2^2xD9)288,116
C4.39(C22xD9) = D36.C4central extension (φ=1)1444C4.39(C2^2xD9)288,117
C4.40(C22xD9) = C22xC9:C8central extension (φ=1)288C4.40(C2^2xD9)288,130
C4.41(C22xD9) = C2xC4.Dic9central extension (φ=1)144C4.41(C2^2xD9)288,131
C4.42(C22xD9) = D4.Dic9central extension (φ=1)1444C4.42(C2^2xD9)288,158
C4.43(C22xD9) = C2xD36:5C2central extension (φ=1)144C4.43(C2^2xD9)288,355

׿
x
:
Z
F
o
wr
Q
<